DATA SHEET

DA502

Digital/Analog Input/Output module

1 Ordering data

Part no.	Description	Product life cycle phase *)
1SAP 250 800 R0001	DA502, digital/analog input/output module, 16 DO, 8 DC, 4 AI, 2 AO	Active
1SAP 450 800 R0001	DA502-XC, digital/analog input/output module, 16 DO, 8 DC, 4 AI, 2 AO, XC version	Active

*) For planning and commissioning of new installations use modules in Active status only.

2 Dimensions

The dimensions are in mm and in brackets in inch.

3 Technical data

3.1 Technical data of the module

The system data of AC500 and S500 « Chapter 4 "System data AC500" on page 9 are valid for standard version.
The system data of AC500-XC ${ }^{\wedge}$ Chapter 5 "System data AC500-XC" on page 13 are valid for the XC version.
Only additional details are therefore documented below.
The technical data are also valid for the XC version.

Parameter		Value
Process supply voltage		
	Connections	Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24 VDC) and 1.9, 2.9, 3.9 and 4.9 for ZP (0 V)
	Protection against reverse voltage	yes
	Rated protection fuse at UP	10 A fast
	Rated value	24 VDC

Parameter		Value
Max. ripple		5%
Current consumption		
	From UP	$0.07 \mathrm{~A}+$ max. 0.5 A per output
	From 24 VDC power supply at the terminals UP/L+ and ZP/M of the CPU/bus module	ca. 2 mA
	Inrush current from UP (at power-up)	$0.04 \mathrm{~A}^{2} \mathrm{~s}$
Galvanic isolation	Yes, per module	
Max. power dissipation within the module	6 W (outputs unloaded)	
Weight (without terminal unit)	ca. 125 g	
Mounting position	Horizontal mounting or vertical with derating (output load reduced to 50% at 40 	The natural convection cooling must not be hindered by cable ducts or other parts in the switch-gear cabinet.
Cooling		

NOTICE!
 Attention:

All I/O channels (digital and analog) are protected against reverse polarity, reverse supply, short circuit and continuous overvoltage up to 30 VDC.

Multiple overloads

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is protected individually by an internal smart high-side switch.

3.2 Technical data of the digital outputs

Parameter	Value
Number of channels per module	16 outputs (with transistors)
Distribution of the channels into groups	1 group of 16 channels
Connection of the channels	Terminals 1.0 to 1.7
	DO0 to DO7
DO8 to DO15	Terminals 2.0 to 2.7
Indication of the output signals	1 yellow LED per channel, the LED is ON if the output signal is high (signal 1)
Monitoring point of output indicator	LED is controlled by process CPU
Reference potential for all outputs	Terminals $1.9,2.9,3.9$ and 4.9 (negative pole of the process supply voltage, signal name ZP)
Common power supply voltage	For all outputs: terminals 1.8, 2.8, 3.8 and 4.8 (positive pole of the process supply voltage, signal name UP)
Output voltage for signal 1	UP (-0.8 V)
Output delay (0->1 or 1->0)	On request

Parameter	
Output current	
Rated value, per channel	
	Maximum value (channels O0 to O15)
Leakage current with signal 0	4 A
Rated protection fuse on UP	$<0.5 \mathrm{~mA}$
Demagnetization when inductive loads are switched off	With varistors integrated in the module (see figure below)
Switching frequency	
	With resistive load
	With inductive loads
With lamp loads	On request
Short-circuit-proof / overload-proof	Max. 0.5 Hz
Overload message (I > 0.7 A)	Yes
Output current limitation	Yes, after ca. 100 ms
Resistance to feedback against 24 V signals	Yes, automatic reactivation after short circuit/over-
Max. cable length	Yead
	Shielded
Unshielded	1000 m

3.3 Technical data of the configurable digital inputs/outputs

Each of the configurable digital I/O channels can be defined as input or output by the user program. This is done by interrogating or allocating the corresponding channel.

Parameter	Value
Number of channels per module	8 inputs/outputs (with transistors)
Distribution of the channels into groups	1 group for 8 channels
If the channels are used as inputs	
Channels DC16...DC23	
If the channels are used as outputs	Terminals 4.0...4.7
Channels DC16...DC23	
Indication of the input/output signals	1 yellow LED per channel, the LED is ON when the input/output signal is high (signal 1)
Monitoring point of input/output indicator	LED is part of the input circuitry
Galvanic isolation	Yes, per module

3.3.1 Technical data of the digital inputs/outputs if used as inputs

Parameter	Value
Number of channels per module	8
Distribution of the channels into groups	1 group of 8 channels
Terminals of the channels DC16 to DC23	Terminals 4.0 to 4.7
Reference potential for all inputs	Terminals $1.9 . .4 .9$ (Negative pole of the supply voltage, signal name ZP)
Indication of the input signals	1 yellow LED per channel, the LED is ON when the input signal is high (signal 1)
Monitoring point of input/output indicator	LED is part of the input circuitry
Input type (according EN 61131-2)	Type 1
Input delay (0->1 or 1->0)	Typ. 0.1 ms, configurable from $0.1 \ldots 32 \mathrm{~ms}$
Input signal voltage	24 VDC
	$0-S i g n a l$
	Undefined Signal
	1-Signal
Ripple with signal 0	$>+5 \mathrm{~V} . . .<+15 \mathrm{~V}$
Ripple with signal 1	$+15 \mathrm{~V} . . .+30 \mathrm{~V}$
Input current per channel	Within $-3 \mathrm{~V} . . .+5 \mathrm{~V}$
	Input voltage +24 V
Input voltage +5 V	Within $+15 \mathrm{~V} . . .+30 \mathrm{~V}$
	Input voltage +15 V
Input voltage +30 V	Typ. 5 mA
Max. cable length	$>1 \mathrm{~mA}$
	Shielded
	Unshielded

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the input (see figure) above. This is why the difference between UPx and the input signal must not exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V . Consequently, the input voltage must range from -12 V to +30 V when $\mathrm{UPx}=24 \mathrm{~V}$ and from -6 V to +30 V when $U P x=30 \mathrm{~V}$.

3.3.2 Technical data of the digital inputs/outputs if used as outputs

Parameter	Value
Number of channels per module	8
Distribution of the channels into groups	1 group of 8 channels
Terminals of the channels DC16 to DC23	Terminals 4.0 to 4.7
Reference potential for all outputs	Terminals $1.9 \ldots . .4 .9$ (negative pole of the supply voltage, signal name ZP)
Common power supply voltage	For all outputs terminals 1.8, 2.8, 3.8 and 4.8 (posi- tive pole of the supply voltage, signal name UP)
Output voltage for signal 1	UP (-0.8 V)
Output delay $(0->1$ or $1->0)$	On request

Parameter	Value
Output current	
	rated value per channel
max. value (all channels together)	500 mA at UP $=24 \mathrm{~V}$
Leakage current with signal 0	4 A
Fuse for UP	10.5 mA
Demagnetization with inductive DC load	Via internal varistors (see figure below this table)
Output switching frequency	
	With resistive load
	With inductive loads
	With lamp loads
Short-circuit-proof / overload-proof	Max. 0.5 Hz
Overload message (I > 0.7 A)	11 Hz max. at 5 W max.
Output current limitation	Yes
Resistance to feedback against 24 V signals	Yes, automatic reactivation after short circuit/over- load
Max. cable length	Yes (software-controlled supervision)
	Shielded
	Unshielded

The following drawing shows the circuitry of a digital input/output with the varistors for demagnetization when inductive loads are switched off.

Fig. 1: Digital input/output (circuit diagram)
1 Digital input/output
2 For demagnetization when inductive loads are turned off

3.4 Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a CS31 bus module.

Parameter	Value
Counting frequency	Max. 50 kHz
Used inputs	See Fast Counter

Parameter	Value
Used outputs	See Fast Counter
Operating modes	See Operating modes

3.5 Technical data of the analog inputs

Parameter	Value
Number of channels per module	4
Distribution of channels into groups	1 group with 4 channels
Connection if channels $\mathrm{Al} 0+$ to $\mathrm{Al3}+$	Terminals 3.0 to 3.3
Reference potential for $\mathrm{Al} 0+$ to $\mathrm{Al3+}$	Terminal 3.4 (AI-) for voltage and RTD measurement Terminal 1.9, 2.9, 3.9 and 4.9 for current measurement
Input type	
Unipolar	Voltage 0 V... 10 V, current or Pt100/Pt1000/ Ni1000
Bipolar	Voltage -10 V...+10 V
Configurability	$0 \mathrm{~V} . .10 \mathrm{~V},-10 \mathrm{~V} \ldots+10 \mathrm{~V}, 0 \mathrm{~mA} . . .20 \mathrm{~mA},$ $4 \mathrm{~mA} . .20 \mathrm{~mA}, \mathrm{Pt100} / 1000$, Ni1000 (each input can be configured individually)
Channel input resistance	Voltage: > 100 k Ω Current: ca. 330Ω
Time constant of the input filter	Voltage: $100 \mu \mathrm{~s}$ Current: $100 \mu \mathrm{~s}$
Indication of the input signals	1 LED per channel (brightness depends on the value of the analog signal)
Conversion cycle	1 ms (for 4 inputs +2 outputs); with RTDs Pt/Ni... 1 s
Resolution	Range $0 \mathrm{~V} . . .10 \mathrm{~V}$: 12 bits Range $-10 \mathrm{~V} . . .+10 \mathrm{~V}$: 12 bits + sign Range $0 \mathrm{~mA} . . .20 \mathrm{~mA}: 12$ bits Range $4 \mathrm{~mA} . .20 \mathrm{~mA}: 12$ bits Range RTD (Pt100, PT1000, Ni1000): $0.1^{\circ} \mathrm{C}$
Conversion error of the analog values caused by non-linearity, adjustment error at factory and resolution within the normal range	Typ. 0.5 \%, max. 1 \% For XC version below $0^{\circ} \mathrm{C}$ and above $60^{\circ} \mathrm{C}$: on request
Relationship between input signal and hex code	
Unused inputs	Are configured as "unused" (default value)
Overvoltage protection	Yes

3.6 Technical data of the analog inputs, if used as digital inputs

Parameter	Value
Number of channels per module	Max. 4
Distribution of channels into groups	1 group of 4 channels
Connections of the channels $\mathrm{AlO}+$ to $\mathrm{Al} 3+$	Terminals 3.0 to 3.3
Reference potential for the inputs	Terminals $1.9,2.9,3.9$ and 4.9 (ZP)
Indication of the input signals	1 LED per channel
Input signal voltage	24 VDC
	Signal 0
	Undefined signal
	Signal 1
Input current per channel	$+5 \mathrm{~V} . .+13 \mathrm{~V} \mathrm{~V}$
	Input voltage +24 V
	Input voltage +5 V
	Input voltage $+15 \mathrm{~V} . .+30 \mathrm{~V}$
	Input voltage +30 V
Input resistance	Typ. 7 mA

3.7 Technical data of the analog outputs

Parameter	Value
Number of channels per module	2
Distribution of channels into groups	1 group for 2 channels
Connection of the channels $\mathrm{AO}+$ +...AO1+	Terminals 3.5 and 3.6
Reference potential for $\mathrm{AO} 0+$ to $\mathrm{AO} 1+$	Terminal 3.7 (AO-) for voltage output Terminals 1.9, 2.9, 3.9 and 4.9 for current output
Output type	
Unipolar	Current
Bipolar	Voltage
Galvanic isolation	Against internal supply and other modules
Configurability	-10 V...+10 V, 0 mA... $20 \mathrm{~mA}, 4 \mathrm{~mA} . .20 \mathrm{~mA}$ (each output can be configured individually)
Output resistance (load), as current output	$0 \Omega . . .500 \Omega$
Output loadability, as voltage output	$\pm 10 \mathrm{~mA}$ max.
Indication of the output signals	1 LED per channel (brightness depends on the value of the analog signal)
Resolution	12 bits (+ sign)
Conversion error of the analog values caused by non-linearity, adjustment error at factory and resolution within the normal range	Typ. 0.5 \%, max. 1 \%

Parameter	Value
Relationship between input signal and hex code	
Unused outputs	Are configured as "unused" (default value) and can be left open-circuited

4 System data AC500

4.1 Environmental conditions

Table 1: Process and supply voltages

Parameter	Value
24 VDC	
Voltage	24 V (-15 \%, +20 \%)
Max. ripple	5% from nominal value
Protection against reverse polarity	Yes
120 VAC	
Voltage	120 V (-15 \%, +10 \%)
Frequency	50/60 Hz (-6 \%, +4 \%)
230 VAC	
Voltage	230 VAC (-15 \%, +10 \%)
Frequency	$50 / 60 \mathrm{~Hz}(-6 \%,+4 \%)$
120 VAC... 240 VAC wide range supply	
Voltage	120 V... 240 V (-15 \%, +10 \%)
Frequency	$50 / 60 \mathrm{~Hz}(-6 \%,+4$ \%)
Allowed interruptions of power supply, according to EN 61131-2	
DC supply	Interruption < 10 ms , time between 2 interruptions > $1 \mathrm{~s}, \mathrm{PS} 2$
AC supply	Interruption < 0.5 periods, time between 2 interruptions $>1 \mathrm{~s}$

NOTICE!

Exceeding the maximum power supply voltage for process or supply voltages could lead to unrecoverable damage of the system. The system could be destroyed.

\int

NOTICE!

Improper voltage level or frequency range which cause damage of AC inputs:

- AC voltage above 264 V
- Frenquency below 47 Hz or above 62.4 Hz

NOTICE!
Improper connection leads cause overtemperature on terminals.
PLC modules may be destroyed by using wrong cable type, wire size and cable temperature classification.

Parameter	Value	
Temperature		
	Operating	$0^{\circ} \mathrm{C} \ldots+60{ }^{\circ} \mathrm{C}$: Horizontal mounting of modules. $0^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$: Vertical mounting of modules. Output load reduced to 50% per group.
	Storage	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
	Transport	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Humidity	Max. 95%, without condensation	
Air pressure		
	Operating	$>800 \mathrm{hPa} /<2000 \mathrm{~m}$
	Storage	$>660 \mathrm{hPa} /<3500 \mathrm{~m}$
Ingress protection	IP 20	

4.2 Creepage distances and clearances

The creepage distances and clearances meet the requirements of the overvoltage category II, pollution degree 2.

4.3 Insulation test voltages, routine test

According to EN 61131-2	Parameter	Value	
	230 V circuits against other circuitry	2500 V	1.2/50 $\mu \mathrm{s}$
	120 V circuits against other circuitry	1500 V	1.2/50 $\mu \mathrm{s}$
	120 V... 240 V circuits against other circuitry	2500 V	1.2/50 $\mu \mathrm{s}$
	24 V circuits (supply, 24 V inputs/outputs, analogue inputs/ outputs), if they are electrically isolated against other circuitry	500 V	1.2/50 $\mu \mathrm{s}$
	COM interfaces, electrically isolated	500 V	1.2/50 $\mu \mathrm{s}$
	COM interfaces, electrically not isolated	Not applicable	Not applicable
	FBP interface	500 V	1.2/50 $\mu \mathrm{s}$
	Ethernet	500 V	1.2/50 $\mu \mathrm{s}$
	ARCNET	500 V	1.2/50 $\mu \mathrm{s}$
	230 V circuits against other circuitry	1350 V	AC 2 s
	120 V circuits against other circuitry	820 V	AC 2 s
	120 V ... 240 V circuits against other circuitry	1350 V	AC 2 s

Parameter	Value	
		AC 2 s
24 V circuits (supply, 24 V inputs/outputs, analogue inputs/ outputs), if they are electrically isolated against other circuitry	350 V	AC 2 s
COM interfaces, electrically iso- lated	350 V	Not applicable
COM interfaces, electrically not isolated	Not applicable	AC 2 s
FBP interface	350 V	AC 2 s
Ethernet	350 V	AC 2 s
ARCNET	350 V	

4.4 Power supply units

For the supply of the modules, power supply units according to PELV specifications must be used.

4.5 Electromagnetic compatibility

Table 2: Range of use

Parameter	Value
Industrial applications	Yes
Domestic applications	No

Table 3: Immunity against electrostatic discharge (ESD), according to IEC 61000-4-2, zone B, criterion B

Parameter	Value
Electrostatic voltage in case of air discharge	8 kV
Electrostatic voltage in case of contact discharge	4 kV , in a closed switch-gear cabinet $6 \mathrm{kV}{ }^{1}$)
ESD with communication connectors	In order to prevent operating malfunctions, it is recommended, that the operating personnel dis- charge themselves prior to touching communica- tion connectors or perform other suitable meas- ures to reduce effects of electrostatic discharges.
ESD with connectors of terminal bases	The connectors between the Terminal Bases and Processor Modules or Communication Modules must not be touched during operation. The same is valid for the I/O-Bus with all modules involved.

${ }^{1}$) High requirement for shipping classes are achieved with additional specific measures (see specific documentation).

Table 4: Immunity against the influence of radiated (CW radiated), according to IEC 61000-4-3, zone B, criterion A

Parameter	Value
Test field strength	$10 \mathrm{~V} / \mathrm{m}$

Table 5: Immunity against fast transient interference voltages (burst), according to IEC 61000-4-4, zone B, criterion B

Parameter	Value
Supply voltage units (DC)	2 kV
Supply voltage units (AC)	2 kV
Digital inputs/outputs (24 VDC)	1 kV
Digital inputs/outputs (120 VAC...240 VAC)	2 kV
Analog inputs/outputs	1 kV
CS31 system bus	1 kV
Serial RS-485 interfaces (COM)	1 kV
Serial RS-232 interfaces (COM, not for PM55x and PM56x)	1 kV
ARCNET	1 kV
FBP	1 kV
Ethernet	1 kV
I/O supply (DC-out)	1 kV

Table 6: Immunity against the influence of line-conducted interferences (CW conducted), according to IEC 61000-4-6, zone B, criterion A

Parameter	Value	
Test voltage	3 V zone B, 10 V is also met.	
High energy surges	According to IEC 61000-4-5, zone B, criterion B	
	Power supply DC	$1 \mathrm{kV} \mathrm{CM} \mathrm{/} \mathrm{0.5} \mathrm{kV} \mathrm{DM}{ }^{2}$)
	DC I/O supply	$0.5 \mathrm{kV} \mathrm{CM} \mathrm{/} 0.5 \mathrm{kV} \mathrm{DM}{ }^{2}$)
	Communication Lines, shielded	$1 \mathrm{kV} \mathrm{CM}{ }^{2}$)
	AC I/O unshielded	$2 \mathrm{kV} \mathrm{CM} \mathrm{/} 1 \mathrm{kV} \mathrm{DM}{ }^{2}$)
	I/O analog, I/O DC unshielded	$1 \mathrm{kV} \mathrm{CM} \mathrm{/} \mathrm{0.5} \mathrm{kV} \mathrm{DM}{ }^{2}$)
Radiation (radio disturbance)	According to IEC 55011, group 1, class A	

${ }^{2}$) $\mathrm{CM}=$ Common Mode, DM $=$ Differential Mode

4.6 Mechanical data

Parameter	Value
Mounting	Horizontal
Degree of protection	IP 20
Housing	Classification V-2 according to UL 94
Vibration resistance acc. to EN 61131-2	all three axes $2 \mathrm{~Hz} \ldots 8.4 \mathrm{~Hz}$, continuous 3.5 mm $8.4 \mathrm{~Hz} . . .150 \mathrm{~Hz}$, continuous 1 g (higher values on request)
Shock test	All three axes $15 \mathrm{~g}, 11 \mathrm{~ms}$, half-sinusoidal

Parameter	Value
DIN rail according to DIN EN 50022	35 mm, depth 7.5 mm or 15 mm
Mounting with screws	Screws with a diameter of 4 mm
Fastening torque	1.2 Nm

4.7 Approvals and certifications

Information on approvals and certificates can be found in the corresponding chapter of the Main catalog, PLC Automation.

5 System data AC500-XC

Assembly, construction and connection of devices of the variant AC500-XC is identical to AC500 (standard). The following description provides information on general technical data of AC500-XC system.

5.1 Environmental conditions

Table 7: Process and supply voltages

Parameter	Value
24 VDC	
Voltage	24 V (-15 \%, +20 \%)
Protection against reverse polarity	Yes
120 VAC... 240 VAC wide range supply	
Voltage	120... 240 V (-15 \%, +10 \%)
Frequency	50/60 Hz (-6 \%, +4 \%)
Allowed interruptions of power supply	
DC supply	Interruption < 10 ms , time between 2 interruptions > 1 s, PS2

NOTICE!

Exceeding the maximum power supply voltage for process or supply voltages could lead to unrecoverable damage of the system. The system could be destroyed.

NOTICE!

For the supply of the modules, power supply units according to PELV or SELV specifications must be used.

The creepage distances and clearances meet the requirements of the overvoltage category II, pollution degree 2.

Parameter	Value
Temperature	
Operating	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} . . .-30^{\circ} \mathrm{C}$: Proper start-up of system; technical data not guaranteed $-40^{\circ} \mathrm{C} \ldots 0^{\circ} \mathrm{C}$: Due to the LCD technology, the display might respond very slowly. $-40^{\circ} \mathrm{C} . .+40^{\circ} \mathrm{C}$: Vertical mounting of modules possible, output load limited to 50% per group $+60^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ with the following deratings: - System is limited to max. 2 communication modules per terminal base - Applications certified for cULus up to $+60^{\circ} \mathrm{C}$ - Digital inputs: maximum number of simultaneously switched on input channels limited to 75% per group (e.g. 8 channels => 6 channels) - Digital outputs: output current maximum value (all channels together) limited to 75 \% per group (e.g. 8 A => 6 A) - Analog outputs only if configured as voltage output: maximum total output current per group is limited to 75 \% (e.g. $40 \mathrm{~mA}=>30 \mathrm{~mA}$) - Analog outputs only if configured as current output: maximum number of simultaneously used output channels limited to 75% per group (e.g. 4 channels => 3 channels)
Storage / Transport	$-40{ }^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$
Humidity	Operating / Storage: 100 \% r. H. with condensation
Air pressure	Operating: $\begin{aligned} & -1000 \mathrm{~m} \ldots . .4000 \mathrm{~m}(1080 \mathrm{hPa} \ldots . .620 \mathrm{hPa}) \\ & >2000 \mathrm{~m}(<795 \mathrm{hPa}): \end{aligned}$ - max. operating temperature must be reduced by 10 K (e.g. $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$) - I/O module relay contacts must be operated with 24 V nominal only
Immunity to corrosive gases	Operating: Yes, according to: ISA S71.04.1985 Harsh group A, G3/GX IEC 60721-3-3 3C2 / 3C3
Immunity to salt mist	Operating: Yes, horizontal mounting only, according to IEC 60068-2-52 severity level: 1

NOTICE!

Risk of corrosion!

Unused connectors and slots may corrode if XC devices are used in salt-mist environments.

Protect unused connectors and slots with TA535 protective caps for XC devices TA535.

Table 8: Electromagnetic compatibility

Parameter	Value
Device suitable for:	
Industrial applications	
Domestic applications	Yes
Radiated emission (radio disturbances)	Yes, according to: CISPR 16-2-3
Conducted emission (radio disturbances)	Yes, according to: CISRR 16-2-1, CISPR $16-1-2$
Electrostatic discharge (ESD)	Yes, according to: IEC 61000-4-2, zone B, cri- terion B
Fast transient interference voltages (burst)	Yes, according to: IEC 61000-4-4, zone B, cri- terion B
High energy transient interference voltages (surge)	Yes, according to: IEC 61000-4-5, zone B, cri- terion B
Influence of radiated disturbances	Yes, according to: IEC 61000-4-3, zone B, cri- terion A
Influence of line-conducted interferences	Yes, according to: IEC 61000-4-6, zone B, cri- terion A
Influence of power frequency magnetic fields	Yes, according to: IEC 61000-4-8, zone B, cri- terion A

In order to prevent malfunctions, it is recommended, that the operating personnel discharge themselves prior to touching communication connectors or perform other suitable measures to reduce effects of electrostatic discharges.

NOTICE!

Risk of malfunctions!

Unused slots for communication modules are not protected against accidental physical contact.

- Unused slots for communication modules must be covered with dummy communication modules (TA524) to achieve IP20 rating.
- I/O bus connectors must not be touched during operation.

5.2 Mechanical data

Parameter	Value
Wiring method	Spring terminals
Degree of protection	IP 20 Vibration resistance IEC 61131-2 IEC 60068-2-6 IEC 60068-2-64
Shock resistance	Yes, according to: IEC 60068-2-27
Assembly position	Horizontal Vertical (no application in salt mist environment)
Assembly on DIN rail	According to IEC 60715 $35 ~ m m, ~ d e p t h ~ 7.5 ~ m m ~ o r ~$
DIN rail type	4 mm
Assembly with screws	1.2 Nm
Screw diameter	
Fastening torque	

5.3 Environmental tests

Parameter	Value
Storage	IEC 60068-2-1 Test Ab: cold withstand test $-40^{\circ} \mathrm{C} / 16 \mathrm{~h}$ IEC 60068-2-2 Test Bb: dry heat withstand test $+85^{\circ} \mathrm{C} / 16 \mathrm{~h}$
Humidity	IEC 60068-2-30 Test Db: Cyclic ($12 \mathrm{~h} / 12 \mathrm{~h}$) damp-heat test $55^{\circ} \mathrm{C}$, 93 \% r. H. / $25^{\circ} \mathrm{C}$, 95 \% r. H., 6 cycles IEC 60068-2-78, stationary humidity test: $40^{\circ} \mathrm{C}, 93 \%$ r. H., 240 h
Insulation Test	IEC 61131-2
Vibration resistance	IEC 61131-2 / IEC 60068-26: 5 Hz ... $500 \mathrm{~Hz}, 2 \mathrm{~g}$ (with SD memory card inserted) IEC 60068-2-64: $5 \mathrm{~Hz} . . .500 \mathrm{~Hz}, 4 \mathrm{~g} \mathrm{rms}$
Shock resistance	IEC 60068-2-27: all 3 axes 15 g , 11 ms , half-sinusoidal

Table 9: EMC immunity

Parameter	Value
Electrostatic discharge (ESD)	Electrostatic voltage in case of air discharge: 8 kV Electrostatic voltage in case of contact discharge: 6 kV
Fast transient interference voltages (burst)	Supply voltage units (DC): 4 kV Digital inputs/outputs (24 VDC): 2 kV Analog inputs/outputs: 2 kV Communication lines shielded: 2 kV

Parameter	Value
High energy transient interference voltages (surge)	Supply voltage units (DC): 1 kV CM *) / 0.5 kV DM *) Digital inputs/outputs (24 VDC): 1 kV CM *) / 0.5 kV DM *) Digital inputs/outputs (AC): 4 kV Analog inputs/outputs: 1 kV CM *) / 0.5 kV DM *) Communication lines shielded: 1 kV CM)* I/O supply (DC-out): 0,5 kV CM *) / 0.5 kV DM *)
Influence of radiated disturbances	Test field strength: $10 \mathrm{~V} / \mathrm{m}$
Influence of line-conducted interferences	Test voltage: 10 V
Power frequency magnetic fields	$\begin{aligned} & 30 \mathrm{~A} / \mathrm{m} 50 \mathrm{~Hz} \\ & 30 \mathrm{~A} / \mathrm{m} 60 \mathrm{~Hz} \end{aligned}$

*) $\mathrm{CM}=$ Common Mode, ${ }^{\text {}}$ DM $=$ Differential Mode

ABB Automation Products GmbH
Eppelheimer Str. 82
69123 Heidelberg, Germany
Telephone: +49 (0)6221 7011444
Fax: +49 (0)6221 7011382
E-mail: plc.support@de.abb.com
abb.com/plc

© Copyright 2017-2020 ABB.

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

